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MOD17A2 provides operational gross primary production (GPP) data globally at 1 km spatial resolution and
8-day temporal resolution. MOD17A2 estimates GPP according to the light use efficiency (LUE) concept
assuming a fixed maximum rate of carbon assimilation per unit photosynthetically active radiation absorbed
by the vegetation (&nax). Minimum temperature and vapor pressure deficit derived from meteorological data
down-regulate €,.x and constrain carbon assimilation. This data is useful for regional to global studies of the
Keywords: terrestrial carbon budget, climate change and natural resources. In this study we evaluated the MOD17A2
Remote sensing product and its driver data by using in situ measurements of meteorology and eddy covariance GPP for 12
Africa African sites. MOD17A2 agreed well with eddy covariance GPP for wet sites. Overall, seasonality was well
Gross primary production (GPP) captured but MOD17A2 GPP was underestimated for the dry sites located in the Sahel region. Replacing
Moderate Resolution Imaging the meteorological driver data derived from coarse resolution reanalysis data with tower measurements
Spectroradiometer (MODIS) reduced MOD17A2 GPP uncertainties, however, the underestimations at the dry sites persisted. Inferred €

MOD17A2 calculated from tower data was higher than the €, prescribed in MOD17A2. This, in addition to uncertainties
1C\i/rl tl:/‘[’//\\fnca in fraction of absorbed photosynthetically active radiation (FAPAR) explains some of the underestimations. The

results suggest that improved quality of driver data, but primarily a readjustment of the parameters in the
biome parameter look-up table (BPLUT) may be needed to better estimate GPP for African ecosystems in
MOD17A2.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Rising levels of atmospheric concentrations of CO, and other
greenhouse gases have increased the global average air temperature
and higher temperatures are predicted to influence future patterns
and magnitudes of precipitation (Solomon et al., 2007). Taken togeth-
er, the changing temperature, precipitation and atmospheric CO,
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burdens are likely to cause shifts in terrestrial productivity. This
may in turn crucially influence the availability of biomass resources
like timber or crop and pasture yields. The IPCC (Intergovernmental
Panel on Climate Change) reports that by 2020 between 75 and
200 million Africans will suffer from increased water stress (Parry
et al., 2007), and in some African countries, the yield from rain-fed
agriculture could be decreased (Schlenker & Lobell, 2010). So far, a
small amount of scientific data and literature exist on the carbon
cycle and climate variability and trends in Africa (Hulme et al.,
2001; Merbold et al., 2009; Nicholson, 2000, 2001; Williams et al.,
2008, 2007) compared to North America, Europe and Asia owing to
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the sparse network of climate stations, eddy covariance stations, and
long term ecological research sites. Consequently, our under-
standing of responses of vegetation productivity and the carbon
cycle to climate variability in African ecosystems is poor which se-
verely limits assessments of ecosystem vulnerability and adaptation
potentials.

In 2006, CarboAfrica was established with the purpose of provid-
ing increased knowledge of Africa's role in the global carbon cycle
(Bombelli et al., 2009). The project's objectives included a synthesis
of flux data from existing eddy covariance sites in Africa, as
well as to support new observations. The eddy covariance technique
(e.g. Aubinet et al., 2000; Baldocchi et al., 2001; Lindroth, Grelle, &
Moren, 1998; Wofsy et al., 1993) has become a standard for measur-
ing fluxes of carbon, water and energy between the land and atmo-
sphere at the ecosystem scale and provides an excellent opportunity
for validation of model estimates of carbon flux from terrestrial
ecosystems.

Gross primary production (GPP) is the capacity of the vegetation
to capture carbon and energy during photosynthesis. GPP can be
derived from eddy covariance measurements through estimates of
net ecosystem exchange (NEE) and ecosystem respiration (Reco)-
The Net primary productivity (NPP) is the net carbon stored after
subtracting the autotrophic plant respiration from GPP. While some
of the annual NPP in an ecosystem may also be lost by episodic events
like windthrow or fire, it is the basis for essential ecosystem services
such as fuel, food, feed, fiber and material for construction purposes
(Richmond, Kaufmann, & Myneni, 2007). As access to these resources
and services is crucial, monitoring of primary productivity is impor-
tant in assessing the variability of resources and in evaluating the
impact of climate change on plant production (e.g. Schwalm,
Williams, & Schaefer, 2011; Zhao & Running, 2010).

The Moderate Resolution Imaging Spectroradiometer (MODIS) on
board the TERRA and AQUA satellites provides data at high spatial and
temporal resolution free of cost. MOD17 is the standard product on
primary production and is derived partly from MODIS data. The
product uses the light use efficiency (LUE) concept developed by
Monteith (1977); Montieth (1972) where GPP is a function of the
absorbed photosynthetically active radiation (APAR) by plants and
the conversion efficiency of absorbed light energy (¢). MOD17 GPP
data are available across the globe at an 8-day temporal resolution
and a 1x1 km spatial resolution from 2000 in close to real time (one
to two weeks delay) (Heinsch et al., 2003).

Since MOD17 is the first continuously available satellite data
driven primary production dataset it has undergone several valida-
tion studies. As part of the BigFoot project, Turner et al. (2005)
evaluated the MODIS GPP product (collection 4.5) across 6 sites in
North America by implementing a scaling approach that relied on
the Biome-BGC (BioGeochemical Cycles) model with inputs of ground
measurements and Landsat ETM + imagery (Turner et al., 2003). A
good agreement between ground-based GPP and MODIS GPP was
found for a coniferous forest site with an underestimation at an agri-
cultural site and overestimation at an Arctic tundra and at a desert
grassland site. Under- and over-predictions of MODIS GPP were con-
cluded to be mainly attributed to inaccuracies in the parameterization
of maximum light use efficiency (¢max) and in the seasonality of
MODIS derived fraction of absorbed photosynthetically active radia-
tion (FAPAR, collection 4). Heinsch et al. (2006) carried out a compre-
hensive evaluation of MOD17 (collection 4.5) comparing MODIS GPP
derived with both DAO (NASA'S Data Assimilation Office) meteorolo-
gy and tower-specific meteorology to eddy covariance based GPP data
across 15 sites in North America. The authors found that MODIS GPP
with DAO meteorology overestimated annual GPP whereas use of
local tower-meteorology in the MODIS GPP algorithm led to an
underestimation across sites. Heinsch et al. (2006) further suggested
problems with the algorithm at a water limited site, which has also
been noted by a number of other authors (Coops et al., 2007;

Kanniah et al., 2009; Leuning et al., 2005). Leuning et al. (2005) eval-
uated MODIS GPP (collection 4.0) against eddy covariance GPP from a
tropical savanna site and a Eucalyptus forest site in Australia and
noted quite large discrepancies at both sites. The authors managed
to improve MODIS GPP predictions by introducing an additional soil
water parameter to the algorithm. Using soil moisture rather than
atmospheric vapor pressure deficit (VPD) to reduce €. as a result of
limited water availability was also suggested by Coops et al. (2007),
who evaluated MODIS GPP (collection 4.5) coupled with 8-day tower
meteorology at a needle leaf forest site in North America. The authors
observed a strong correlation between eddy covariance GPP and pre-
dictions of GPP by the MODIS algorithm, but with an underestimation
of 30%. Implementing the same soil water modifier as proposed by
Leuning et al. (2005) in the MODIS GPP algorithm yielded a slightly im-
proved correlation and Coops et al. (2007) attributed the underestima-
tion observed between measured and modeled GPP to the level of
MODIS &€nax Kanniah et al. (2009) evaluated MODIS GPP (collections
45, 4.8 and 5.0) using both DAO and tower meteorology as inputs to
the algorithm at a tropical woody savanna site in northern Australia.
The authors noted a negative bias in GPP due to €., and VPD in collec-
tion 5.0 and recommended a readjustment of these parameters in the
algorithm to achieve a more accurate estimation of GPP at the site.
Kanniah et al. (2009) also observed improved capture of seasonal
GPP dynamics when the VPD-scalar was replaced by the Evaporative
Fraction (the ratio of the energy exported as evaporated water to the
total amount of energy, EF).

Although a number of studies over tropical dryland ecosystems
have helped to increase confidence in the MODIS products
(Fensholt, Sandholt, & Rasmussen, 2004; Fensholt et al., 2006;
Huemmrich et al., 2005; Kanniah et al., 2009; Leuning et al., 2005),
few have evaluated the MODIS primary production algorithm for eco-
systems in Africa. Fensholt et al. (2006) compared field measured
above ground NPP in semi-arid Senegal against MODIS net photosyn-
thesis (PsnNet, collection 4.0) and MODIS annual NPP (collections 4.0
and 4.5). The authors observed moderate relationships and found
that MODIS underpredicted NPP in this region due to the biome pa-
rameter look-up table (BPLUT) values controlling the maintenance
respiratory costs by leaves and roots. Sjostrom et al. (2011) found
that MODIS GPP (collection 5) performed reasonably well in
explaining the variability in eddy covariance GPP at a range of African
ecosystems. However, the product was observed to underestimate
GPP across sites, most significantly in dry savanna ecosystems in the
Sahel.

Even though the coarse spatial resolution of the reanalysis meteo-
rology data can introduce uncertainties in MODIS GPP at certain sites
(Zhao, Running, & Nemani, 2006), there is a general agreement that
performance of the MODIS GPP product in predicting GPP is good
across a range of climates under normal conditions (Plummer,
2006). Studies that have utilized a ground-based GPP scaling ap-
proach or that have coupled MODIS GPP with tower meteorology to
evaluate the algorithm have noted that there is a potential for
improvements (Heinsch et al.,, 2006; Kanniah et al., 2009; Turner et
al., 2003, 2005), some of which have already been made (Zhao et
al., 2005). However, gaps still exist in the representation of biomes
as there is, in general, a rather strong focus on northern latitude
ecosystems. Syntheses of eddy covariance data through networks
such as CarboAfrica or AMMA (African Monsoon Multidisciplinary
Analyses) (Lebel et al., 2009) are critical to reduce this bias and to
ensure continuous evaluation of satellite based biophysical products.

This paper evaluates the MODIS GPP product using eddy covariance
data from 12 sites in Africa (Table 1, Fig. 1). The objectives of this paper
are: to evaluate the MOD17A2 GPP product for Africa through compar-
isons with GPP estimated from eddy covariance and; to evaluate the
role and uncertainty of the variables (meteorological data derived
from coarse resolution reanalysis, €m.x and FAPAR) used in the
algorithm.
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Table 1
Site descriptions including name (abbreviation), latitude and longitude (lat/long, decimal degrees), general ecosystem type, dominant MOD12Q1 land cover class (5x5 km win-
dow), mean annual long-term precipitation (MAP, mm), mean annual temperature (MAT, °C), years of measurements, number of weekly GPP data points and references.

Name Lat Lon Ecosystem (MOD12Q1 MAP MAT Years with Weeks References
Cover) (mm) (°C) data with data

Bontioli 10.87 —3.07 Grassland/shrubland Savanna 926 26.1 2004, 2006 43 Brummer et al. (2008)
(BF-BON)

Maun —19.92 23.56 Woodland Savanna 465 22.0 1999-2001 93 Veenendaal, Kolle, and
(BW-MA1) Lloyd (2004)

Hinda —4.68 12.00 Forest Savanna 1200 23.7 2001-2002 71 Longdoz et al. (2010)
(CG-HIN)

Tchizalamou —4.29 11.66 Grassland Savanna 1150 26.0 2006-2007 70 Merbold et al. (2009)
(CG-TCH)

Agoufou 1534 —1.48 Open woody Grassland 374 30.2 2007-2008 34 Timouk et al. (2009)
(ML-AGG) savanna

Kelma 15.22 —1.57 Open forest Grassland 374 30.2 2007-2008 76 Timouk et al. (2009)
(ML-KEM) (seasonally flooded)

Wankama Fallow 13.65 2.63 Shrubland Grassland 510 29.5 2005-2006 78 Ramier et al. (2009)
(NE-WAF)

Wankama Millet 13.64 2.63 Cropland Grassland 510 29.5 2005-2006 72 Boulain et al. (2009)
(NE-WAM)

Demokeya 13.28 30.48 Grassland/savanna Open shrubland 320 26.0 2007-2009 109 Ardo et al. (2008)
(SD-DEM)

Skukuza —25.02 31.50 Wooded grassland Savanna 545 22.0 2000-2008 339 Kutsch et al. (2008)
(ZA-KRU)

Malopeni —23.83 31.21 Savanna Savanna 458 222 2009 41 -
(ZA-MAP)

Mongu —15.44 23.25 Woodland Savanna 945 24.5 2007-2009 90 Merbold et al. (2009)
(ZM-MON)

2. Data and methodology MOD17A3 contains annual sums of NPP (Heinsch et al., 2003). APAR
is calculated as the product of incoming photosynthetically active
2.1. The MOD17 algorithm radiation (PAR) and FAPAR whereas GPP is calculated as:

MOD17 consist of two products, MOD17A2 and MOD17A3.

MOD17A2 contains both 8-day GPP and 8-day PSNnet, whereas GPP = PAR x FAPAR x ¢ (1)
20°W 10°W 0° 10°E 2B 30°E  40°E  S0°E
1 1 ] ! 1 1 1

30°N] —30°N

20°N] —20°N

10°N— —10°N

0° = —0°

MAP (mm)

s [_Jo-100 —10°S
[ ] 101-200
[ ] 201-400

20°5 —20°S
[ ] 401-600
[ 601 - 1000

so's= [ 1001 - 2000 -30°8
—

I I I | 1 | 1 I
20°W 10°W 0° 10°E 20°E 30°E 40°E S50°E

Fig. 1. Mean annual precipitation (MAP, mm) across Africa and locations of eddy covariance sites included in this study (rainfall data from UNEP/GRID, grid.unep.ch/).
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where PAR is determined as a fraction of the incident shortwave radi-
ation (S;)

PAR =S, x 0.45 )

and ¢ is calculated by modifying €,,.¢x by scalars of daily VPD (VPDs)
and low daily minimum air temperature (Ts) that reduce €, at cold
temperatures and/or high VPD:

€= &g X Ts x VPD. (3)

The MODIS GPP 5.1 data used in this paper implements 6-hourly
National Center for Environmental Prediction-Department of Energy
(NCEP-DOE) reanalysis II data for air temperature, VPD and S,. In
MODIS GPP 5.1 the original NCEP-DOE reanalysis Il data is interpolated
from the original resolution of approximately 1.9° latitude x 1.9° longi-
tude to 1x1 km grids according to Zhao et al. (2005). FAPAR in the
MODIS GPP algorithm is derived from the 8-day MOD15A2 1 km prod-
uct, and the 1 km University of Maryland (UMD) land cover classifica-
tion scheme in the MOD12Q1 product is used to map biome specific
physiological parameters (€max, Minimum and maximum temperature
and VPD) using a BPLUT.

For each site we extracted the MOD12Q1 land cover data (UMD),
NCEP-DOE reanalysis Il data and 8-day MOD17A2 GPP. This was
done for the period from 2000 to 2009 for the 1x 1 km tower pixels
(Connolly et al.,, 2009; Zhang et al., 2006) and the 5x5 km area
centered over each of the flux towers.

2.2. Data from the flux towers

2.2.1. Eddy covariance and meteorological data

Twelve eddy covariance measurement sites associated with
CarboAfrica and AMMA were used and represent a variety of African
ecosystems and rainfall regimes (Fig. 1, Table 1). The sites cover a di-
versity of climate and vegetation types with five sites in the Sahel
(Wankama Millet, Wankama fallow, Kelma, Agoufou and Demokeya),
one in the Sudanian zone (Bontioli), two in the more humid region
close to the equator (Tchizalamou and Hinda) and four sites in the
semi-arid and sub humid regions of southern Africa (Maun, Mongu,
Skukuza and Malopeni).

Eddy covariance data were either collected from participating site
researchers or downloaded directly from the CarboAfrica network
website (gaia.agraria.unitus.it/home/sites-list). For all sites, except
Wankama Millet and Fallow, the gap-filled and flux-partitioned Level
4 CarboAfrica product was used (Papale et al., 2006; Reichstein et al.,
2005). This product contains a number of gap-filled meteorological
and environmental variables, including GPP calculated from NEE. In
the Level 4 CarboAfrica product NEE is either estimated through the
storage correction obtained by applying the discrete approach (same
for all sites) or by using the storage correction determined by the prin-
cipal investigator at each site. NEE is then gap-filled using the Marginal
Distribution Sampling (MDS) method (Reichstein et al., 2005) or the
Artificial Neural Network (ANN) method (Papale & Valentini, 2003).
For sites for which the Level 4 CarboAfrica product was available we
used standardized GPP data calculated from NEE filled using the MDS
approach, whereas GPP from Wankama millet and fallow was derived
from NEE gap-filled according to the MDS approach by using publicly
available methods at bgc-jena.mpg.de/bgc-mdi/html/eddyproc/index.
html (Reichstein et al., 2005). Collected flux data originate from year
2000 up to 2009 with only a few years of data available for most sites
(Table 1).

Meteorological data (PAR, air temperature and VPD) measured at
the flux towers (here forth referred to as tower data) originated from
the same sources as described above for the eddy covariance data.

These tower data were directly compared to the NCEP-DOE reanalysis
Il data to assess how well the reanalysis data set represented the local
conditions. Details on the instrumentation and other characteristics at
each site are available from the references listed in Table 1. Further-
more, the tower data was used as input to the MOD17A2 algorithm
to compare GPP estimated using the tower data with the NCEP-DOE
reanalysis II data.

2.2.2. FAPAR, data uncertainty and light use efficiency

To study the influence of FAPAR on GPP we replaced the FAPAR
used in the MOD17 GPP calculation with field calculated FAPAR for
one site-year (SD-DEM, 2009). Red (center bandwidth: 655 nm)
and NIR (center bandwidth: 855 nm) in situ measured reflectance
were averaged from 0900 to 1500 (Fensholt et al., 2004). In situ
FAPAR was then calculated through use of the simple ratio (SR)
using the formulations by Sellers et al. (1996):

(SR—SR 1nin) x (FAPAR . —FAPAR i)

FAPAR = SR SR

+ FAPAR 1, (4)

max 2™ min

where SR is the simple ratio (NIR/Red reflectance), FAPAR,.x and
FAPAR i, were assumed to be 0.9 and 0.01 respectively whereas the
vegetation cover dependent values of SRy, and SRy.x, derived from
Advanced Very High Resolution Radiometer data, were set to 1.81
and 5.35 (Sellers et al., 1996).

In order to estimate the propagation of uncertainty from VPD, in-
coming PAR and FAPAR to annual GPP we used Monte Carlo analysis.
The RMSE's derived from the comparisons of NCEP/DOE II and of
MOD17A2 FAPAR with tower data for SD-DEM (PAR: 2.8 MJ, VPD:
1196 Pa, FAPAR: 0.8) were used to represent the standard deviations
assuming normal distribution for all variables (T, was not included
as daytime temperatures were rarely less than 12.0 °C). For each var-
iable 500 simulations were performed, as well as 500 simulations
where all three variables were varied randomly and independently
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Fig. 2. Annual sums of eddy covariance estimated GPP (g Cm~2year ') versus
MOD17A2 NCEP Il GPP (g Cm~2year™'). Bars represents standard deviation of
MOD17A2 GPP sums over the 5x 5 pixels centered on the eddy covariance tower. Data
for all sites included when both eddy covariance and MOD17A2 NCEP I GPP were avail-
able (see Table 2 for the number of available observations per year).
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allowing an estimate of the combined data uncertainty on annual
GPP.

3. Results
3.1. MOD17A2 NCEP II GPP validation

MOD17A2 NCEP Il GPP was compared to eddy covariance GPP and
results are shown in Figs. 2, 3 and 4A. Fig. 2 shows yearly sums of GPP
measured by eddy covariance versus sums of GPP from MOD17A2
NCEP Il based on the amount of available observations per year
(Table 2). Fig. 3 illustrates time-series of MOD17A2 NCEP I GPP and
eddy covariance GPP and Fig. 4A shows a scatterplot between 8-day
eddy covariance GPP against 8-day MOD17A2 NCEP II GPP.

A modest correlation was found between MOD17A2 NCEP II GPP
and eddy covariance derived GPP for all sites and observations (r=
0.57, RMSE=2.58 g Cm~2day~!, Fig. 4A). Substantial variations
existed between sites and between years (r=0.24 to 0.92, RMSE =
0.66 to 8.09 g Cm~2 day ™', Table 2). As can be seen in Figs. 2 and 3
and in Table 2 MOD17A2 NCEP II underestimates GPP for the majority
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of site-years. The mean difference for all sites and observations was
—0.70 g Cm 2 day ™. Yearly mean differences between MOD17A2
NCEP II GPP and eddy covariance GPP ranged between an underestima-
tion of —5.80 g Cm ™2 day ! for ML-KEM in 2008, to an overestimation
0f 1.92 g Cm~2 day~! for ZA-KRU in 2006 (Table 2). A greater negative
mean difference and larger RMSE was observed for the Sahelian sites
(—1.72gCm~2day~!, RMSE=3.54) when compared to other
sites (—0.22 gC m~2 day ™~ !, RMSE = 2.03). Excluding data outside
the vegetation growing period (defined here when eddy covariance
GPP<1 gC m~2day~!; i.e, during the dry season) generally revealed a
decline in r and an increase in RMSE (Table 2). However, decreased, in-
creased as well as unchanged relationships were found within individual
site-years. For some site-years the remaining number of observations
was too low to yield meaningful correlations when including data from
the vegetation season only (e.g. ZA-MAP).

For the majority of sites the seasonality, start and end of the veg-
etation season were well captured by MOD17A2 NCEP II GPP (Fig. 3).
However, significant underestimations were observed at the peak of
the vegetation period for most of the sites. One of the possible expla-
nations for the deviations observed between MOD17A2 and eddy
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covariance GPP could be inaccuracies in the NCEP-DOE II reanalysis
data used in the product.

3.2. Evaluation of impacts of meteorological data and scalars on &

Replacing NCEP-DOE II with tower data (here forth referred to as
MOD17A2 Tower GPP) for estimating MOD17A2 GPP slightly increased
the overall correlation with eddy covariance GPP (r=0.62, RMSE =
2.58 gC m~2 day~ !, Fig. 4B). Correlations were observed to increase
for 26 of the 31 site years (data not shown), but as with MOD17A2
NCEP II GPP substantial variations existed between sites and between
years (r=0.29 to 0.96, RMSE=0.51 to 8.31). Results further revealed
a correlation of r=0.88 (RMSE=0.85gCm 2day~') between
MOD17A2 NCEP Il GPP and MOD17A2 Tower GPP which may indicate
a reasonable similarity of the driver data (Fig. 4C).

Correlations between the NCEP-DOE II reanalysis data and local
tower data were strongest for temperature, slightly weaker for VPD
and with the weakest agreement found for incoming PAR (Fig. 5). As
can be seen in Fig. 5A, daily average temperature (T,,g) from
NCEP-DOE II is underestimated across sites with an average difference
of 2.35°C (r=0.85, RMSE=3.5 °C). No clear systematic bias was
found for daily minimum temperature (Tpyi,) (r=0.85, RMSE=
2.9 °C, Fig. 5B). For the majority of sites included in this study, the
Tmin function was observed not to constrain MOD17A2 GPP much as
only 10% of the daily daytime observations were below 12.0 °C which
is the threshold at which daily minimum temperature limits & for
grasslands (Zhao & Running, 2010). The corresponding limit for
savannas is 11.4 °C. As GPP at many of these sites is mainly driven by

water availability (Merbold et al., 2009), VPD rather than low temper-
ature is likely to have a larger effect on the variability of € in the
MOD17A2 GPP algorithm. NCEP-DOE 1II slightly underestimates day-
time VPD with an average difference of 227 Pa (r=0.86, RMSE=
738 Pa, Fig. 5C). Fig. 6 further shows scatterplots of eddy covariance
GPP against tower VPD for all of the sites broadly divided into savannas
and grasslands according to “Ecosystem type” in Table 1. For grasslands
there was, in general, a systematic decrease in GPP with increasing
VPD and GPP was observed never to exceed 1 gC m~2 day 2 for
VPD-values higher than 4500 Pa (Fig. 6B). There were significant vari-
ations in linear regression relationships of GPP versus VPD among sites.
For the sites located in the moist tropical regions of Congo (CG-HIN and
CG-TCH) VPD was observed to be weakly positively correlated with
GPP. Remaining sites were found to be negatively correlated with VPD
with correlations ranging from r = —0.21 for ZA-KRU to r = —0.88 for
BF-BON. Even though the forested Sahelian site in Mali (ML-KEM)
followed the expected pattern with a linear decrease in GPP with increas-
ing VPD, it was observed to have high GPP values (>5 gC m~—2 day—!)
when VPD exceeded 3200 Pa (Fig. 6A).

The relationship between incoming PAR from NCEP-DOE II and in-
coming PAR from the tower data was scattered (Fig. 5D). High cloud
cover can cause substantial daily variation which is reflected in the
weak correlation (r=0.46, RMSE =2.80 M] day ).

3.3. FAPAR and data uncertainty

We compared the FAPAR used in MOD17A2, which originates
from the MOD15A2 product (Myneni et al., 2002), with in situ
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Table 2

Comparison of MOD17 GPP versus GPP from flux towers in Africa divided per site-year.
Number of 8-day values per site-year including all data and during the vegetation season
(Vs, GPP>1 gC m~2 day~ '), correlation (r), RMSE and mean differences (predicted —
observed).

Site/year Number Pearson RMSE Mean difference

of correlation (gCm~2 [gCm~2day™!]

Samples coefficient (r) day™!)

All Vs Al Vs All Vs All Vs
SD-DEM/2007 23 17 0.89 0.0 229 266 —167 —222
SD-DEM/2008 42 14 087 091 186 320 —092 —281
SD-DEM/2009 44 10 062 —004 149 309 —063 —284
BF-BON/2004 9 2 088 - 066 - 036 -
BF-BON/2006 33 17 092 079 310 430 —207 —3.89

BW-MA1/2000 46 34 082 0.59 1.02  1.06 037 0.24
BW-MA1/2001 35 26 078 0.58 1.03  1.07 029 0.10
CG-HIN/2001 28 28 040 040 111 111 043 043

CG-HIN/2002 43 43 038 038 174 174 —-066 —0.66
CG-TCH/2006 25 10 072 0.04 173 240 —-010 —1.64
CG-TCH/2007 45 35 086 077 1.76 192 —-085 —1.29
ML-AGG/2007 34 8 079 030 223 457 —-091 —4.03
ML-KEM/2007 26 22 087 084 475 516 —3.76 —441
ML-KEM/2008 39 28 080 081 809 955 —580 —811
ZA-KRU/2000 28 22 084 081 225 243 0.01 —034
ZA-KRU/2001 42 28 090 0.80 144 157 011 —034

ZA-KRU/2002 29 19 072 074 1.76 141 140 1.02
ZA-KRU/2003 36 21 079 0.66 122 111 070  0.29

ZA-KRU/2004 41 32 074 065 371 411 —-119 —197
ZA-KRU/2005 30 8 088 081 1.15 0.86 076  —033
ZA-KRU/2006 6 5 024 —-052 212 212 192 1.89

ZA-KRU/2007 27 21 059 0.60 239 250 -—028 —0383

ZA-KRU/2008 24 11 066 041 202 207 1.20 045

ZM-MON/2007 14 13 088 0.86 319 330 —256 —285
ZM-MON/2008 46 42 085 083 223 231 —-162 —184
ZM-MON/2009 28 25 090 088 235 245 —154 —188

ZA-MAP/2009 13 7 045 —050 158 0.63 1.14 031

NE-WAM/2005 20 10 0.71 035 097 135 —059 —1.29
NE-WAM/2006 35 11 080 0.55 073 125 —-032 —1.08
NE-WAF/2005 16 9 089 082 200 264 —123 —229
NE-WAF/2006 34 11 061 053 212 371 —-1.07 —333
Min 6 2 024 -—-052 066 063 —580 —811
Max 46 43 092 091 8.09 9.55 192 1.89

derived FAPAR from 2009 at SD-DEM (Fig. 7A). MODIS GPP uses a
linear fitting to fill unreliable MOD15A2 FAPAR (Zhao et al., 2005).
Even though the correlation increased by replacing the FAPAR used
in MOD17A2 Tower GPP with field calculated FAPAR (r=0.96,
RMSE=1.28 gC m~2 day~ ', n=46) the large underestimation pre-
viously observed between MOD17A2 GPP and eddy covariance GPP
during the peak vegetation season still persisted for this site
(Fig. 7B). In situ calculated FAPAR was in general lower than the
MOD17A2 FAPAR during the dry season, however, Fig. 7A mainly re-
veals that FAPAR in MOD17A2 fails to capture the green-up that oc-
curred in 2009.

The Monte Carlo simulation, based on data from SD-DEM, further
revealed that MOD17A2 FAPAR brought the highest output uncertainty
on annual GPP. The output uncertainty, quantified as the standard de-
viation of the 500 simulations for each variable, was highest for FAPAR
(79.9 gC m~2 year—!) followed by VPD (55.2 gC m~2 year™') and
incoming PAR (42.8 gC m~2 year™!). The simultaneous effect of the
included uncertainties generated an output standard deviation of
112 gC m™~2 year™ ! for MOD17A2 NCEP II GPP. This corresponds to a
95% confidence interval of +219 gC m~2 year ! for SD-DEM.

3.4. Light use efficiency

The €.« values in the BPLUT used in the calculation of € in the
MOD17A2 algorithm for the two main ecosystem types are
1.21 gC M)~ ! for savannas and 0.86 gC MJ~! for grasslands (Zhao &

Running, 2010). Linear regressions with no offset were fitted to eddy
covariance GPP and products of MOD17A2 FAPAR and tower PAR,
VPD; and T; to determine an inferred €y, for each ecosystem type
(Fig. 8) and site (Table 3). For savannas, site variations in €myax was
high as it varied from 0.33 gC MJ ! for ZA-MAP to 3.50 gC MJ ! for
ML-KEM (Table 3). The explained variance for savannas was low for
both the inferred €. of 1.66 gC MJ ™! (36%) and the MOD17A2 &ax
of 1.21 gC MJ ™! (26%) (Fig. 8a). For grasslands a significant improve-
ment was made with an £, of 2.01 gC M]~! which explained 74%
of the variance in eddy covariance GPP whereas the &pa of
0.86 gC MJ ™! used in MOD17A2 only explained 25% of the variance
(Fig. 8b). For grasslands inferred &g, varied between 1.58 gC M] ™!
(NE-WAM) to 2.92 gC MJ~' (NE-WAF). Out of the 12 savanna and
grassland sites, 10 had higher inferred €5,.x compared to the
MOD17A2 values for savanna and grassland biomes (Table 3).

4. Discussion

The MOD17A2 product has previously been evaluated for several
biomes with a rather strong focus on northern latitude ecosystems
(Coops et al., 2007; Heinsch et al.,, 2006; Sims et al., 2006; Turner et
al., 2005, 2006; Xiao et al., 2004). Few studies have validated the
product for savanna ecosystems (Fensholt et al., 2006; Kanniah et
al., 2009; Leuning et al., 2005; Sjostrom et al., 2011). In this study
we used eddy covariance data for twelve African sites covering a
total of thirty-one site years. Site mean differences between
MOD17A2 and eddy covariance GPP were found to vary (Table 2),
but a rather large underestimation was observed specifically for dry
sites located in the Sahel.

There are uncertainties associated with the eddy covariance meth-
od (Loescher et al.,, 2006). Estimation on the uncertainty of eddy co-
variance based estimates of GPP is complex (Richardson et al.,
2012) and may range from 10 to at least 50 gC m~ ! year~ ! for NEE
(Aubinet et al., 2000; Baldocchi, 2003). The GPP data in this study
was obtained from NEE and Re.,, where Reco, Was extrapolated by
driving the relationship between nighttime Rec, and air temperature
on day time air temperature as determined by Lloyd and Taylor
(1994). Archibald et al. (2009) demonstrated that flux partioning at
ZA-KRU could be improved by using more appropriate temperature
functions at the site and by including controls from soil moisture.
Merbold et al. (2009) further showed that temperature had an influ-
ence on R, for several of the sites included in this study. For the dry
sites (<1000 mm of annual rainfall), however, Re., was found to also
be dependent on soil moisture. The standard methods used in the
processing of the eddy covariance data might not always be appropri-
ate for tropical ecosystems (Archibald et al., 2009). It should therefore
be noted that the uncertainties associated with the flux partioning
and the harsh temperature conditions found at many of the sites
may result in undetermined biases.

Further uncertainties also arise due to scale mismatch between
the eddy covariance footprint and the MODIS data. (Tan et al.,
2006), for instance, reported that gridding artifacts together with
effects of viewing geometry resulted in an average overlap of less
than 30% between MODIS grid cells and actual observations. This
makes direct comparison of field measurements with MODIS data
problematic, as retrievals are not necessarily centered on the precise
location of the pixel used. This problem may become less severe for
homogenous landscapes (Tan et al., 2006).

Analysis of the NCEP-DOE II meteorological data drivers (Tpin, VPD
and PAR) used in the MODIS GPP algorithm showed some noticeable
differences when compared to tower climate data. The NCEP-DOE II
data are originally produced at a coarse resolution (Kanamitsu et al.,
2002). These data are then further interpolated to a 1x1 km grid
which is used by MOD17 to calculate GPP and NPP (Zhao et al,
2005). The initial coarse spatial resolution data has been shown to in-
clude biases (Betts et al., 2006; Zhao et al., 2006). Globally, interannual
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Fig. 5. Scatter plots showing daily NCEP-DOE II meteorology against daily tower meteorological data for T,yg (A), Tmin (B), VPD (C) and PAR (D).

variability of NCEP-DOE II temperature have been shown to be similar
to the CRUTEM3 dataset, which is based on instrumental observations
(Zhao & Running, 2010). NCEP-DOE II T,, was found to be
underestimated (Fig. 5A). The slight underestimation in NCEP-DOE II
VPD (Fig. 5C) could have been caused by uncertainties in T,y as rela-
tively small errors in temperature can introduce errors in VPD (Zhao
et al., 2006). Radiation from reanalysis data generally contains large
uncertainties (Kalnay et al., 1996), specifically in areas with a high spa-
tial and temporal variability in cloud cover. Comparing incoming PAR
from NCEP/DOE II versus field measured incoming PAR (Fig. 5D)
showed a large amount of scatter that can influence the uncertainty
of GPP estimated by MOD17 particularly during the growing seasons.
This is, to a certain degree, reflected in the increased errors observed
between MODIS NCEP II GPP and eddy covariance calculated GPP
when only growing season points were included, but is also reflected
in the increased correlations that were observed when driving MODIS
GPP with tower data (data not shown). Alternative methods of
deriving PAR, such as those presented by Liang et al. (2006) or Van
Laake and Sanchez-Azofeifa (2005), both of which have been success-
fully applied on MODIS imagery, may increase the accuracy by which
PAR is retrieved for large areas. However, none of these methods
have yet been tested or implemented for MODIS at the global scale
(Liang et al.,, 2010).

Replacing NCEP-DOE II with tower data in the MODIS GPP algo-
rithm increased the correlation with eddy covariance GPP (Fig. 4B).
Even though the overall correlation increased, larger underestima-
tions were observed for many site-years. This effect has also previous-
ly been observed by Heinsch et al. (2006). When calibrating
MOD17A2 at the global scale, the values in the BPLUT are influenced

by observed biases in the global meteorological reanalysis dataset.
For NCEP/DOE 1I, S, is globally overestimated whereas VPD is
underestimated (Zhao et al., 2006). Thus, to get expected average an-
nual GPP and NPP for given biome type's, parameter settings in the
MOD17A2 BPLUT are used to counteract global under- or overestima-
tions by NCEP/DOE II.

The comparison between VPD and GPP revealed that the VPD
constraint on GPP is reasonable for grasslands (Fig. 6B). The overall pat-
tern for savannas was less clear with especially one site (ML-KEM)
showing strong assimilation even at high VPD (Fig. 6A). This is due to
the nature of the site, which is inundated during the rain season and
the beginning of the dry season. During this period, the site behaves
like an irrigated site in a dry environment (Timouk et al., 2009). Access
to water from the deeper soil layers for the trees may further explain
the rather unclear pattern observed between VPD and GPP at savannas
(Leuning et al., 2005). Merbold et al. (2009) reported a strong decrease
in assimilation rates with increasing VPD above 2000 Pa whereas
Kanniah, Beringer, and Hutley (2011) showed that VPD and GPP was
strongly correlated along the Northern Australian Tropical Transect.
In contrast, Garbulsky et al. (2010) reported a weak influence of VPD
on ¢ for savannas. Daytime VPD is used in MODIS GPP to quantify
water stress, whereas soil moisture availability, as previously proposed
to be included in the algorithm by Leuning et al. (2005), is not
implemented. A more shallow rooting depth for grasses compared to
trees could explain why VPD can be used as a reasonable single con-
straint in grasslands but not in savannas as trees in savannas can
have access to water even at times when the upper parts of the soil
profile are characterized by limited water availability (Ardo et al.,
2008; Otieno et al., 2005; Raddad & Luukkanen, 2007). In addition to
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the run-on effect at ML-KEM this may explain some of the scatter ob-
served for savannas in Fig. 6A.

Comparisons of FAPAR calculated from field measurements with
MOD15A2 FAPAR in savanna ecosystems has previously been
presented for semi-arid Senegal (collection 4, Fensholt et al., 2004)
and the Kalahari woodlands (collection 3, Huemmrich et al., 2005).
Both of these studies revealed that the seasonal variation was cap-
tured well by the MODIS FAPAR product, however, FAPAR from
MODIS was observed to be overestimated. Kanniah et al. (2009)
found reasonable levels of MOD15A2 FAPAR as compared to field
data which may indicate that the problem of FAPAR overestimation
for savannas has been resolved in MOD15A2 collection 5. Although
field calculated FAPAR-values in this study were observed to be
slightly lower than MOD15A2 during the dry season (Fig. 7A) at the
site in the Sudan, the major deviations occurred mainly at the start
of the 2009 growing season. MODIS GPP uses a simple linear fitting
to fill unreliable or missing MOD15A2 FAPAR (Zhao et al., 2005).
Consecutive unreliable FAPAR values are linearly interpolated from
the nearest reliable value prior and after it. Thus, the quality of the
interpolation is determined by the accuracy of the FAPAR flagged as re-
liable. The linear interpolation across observations produced constant
FAPAR which failed to match the green up observed in the FAPAR cal-
culated from field data (Fig. 7A). In regions where the interference of

clouds and aerosols is persistent during the growing season fitting
functions such as those proposed by Jénsson and Eklundh (2004)
may provide more realistically interpolated FAPAR time series than
what is currently used in the MOD17A2 algorithm. However, by replac-
ing the FAPAR used in MODIS Tower GPP with in situ calculated FAPAR
it was shown that the rather large underestimation previously
observed between eddy covariance GPP and MOD17A2 GPP during
the peak vegetation season still remained (Fig. 7B). Thus, even though
correct magnitudes of FAPAR would be provided, GPP would still be
underestimated at SD-DEM in 2009.

Consideration must also be taken into the propagation of error in
MODIS land cover into MOD15A2 FAPAR and MODIS GPP. MOD15A2
FAPAR is retrieved using a canopy radiation transfer model which re-
quires MODIS land cover to define canopy structure type (Myneni et
al., 2002). If a forest pixel, for instance, is incorrectly defined as grass-
land in MODIS land cover MOD15A2 FAPAR will be underestimated
because the wrong canopy structure is used. Similarly, MODIS GPP
will use the wrong &,.« in the BPLUT to calculate GPP.

Among the 12 sites included in this study, inferred site-specific €my.x
from tower data and MOD17A2 FAPAR ranged from 0.33 to
3.50 gC MJ~! (Table 3). Out of 12 sites, 10 had higher inferred &max
compared to the MOD17A2 BPLUT values for savanna and grassland bi-
omes and for 6 sites tower based €.« Values were more than twice the
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€max used in the MOD17A2 BPLUT. In addition to the uncertainties in
the driver data, these differences may explain the underestimations
observed in the comparisons between MODIS GPP and eddy covariance
GPP at dry sites. Care must, however, be taken in the absolute interpre-
tation of these results as underestimated MOD17A2 FAPAR (as ob-
served at SD-DEM in 2009, Fig. 7) will lead to overestimated €,ax.
Recent studies have shown that €. can vary considerably both
within and between vegetation types in response to environmental var-
iation (Garbulsky et al.,, 2010; Sims et al,, 2006; Wu et al., 2010). This
variability may be hard to describe with a broad class (UMD) land
cover dependent static €,ax, €specially for savannas (Fig. 8a), and with-
out consideration of soil moisture in dry areas (Gebremichael & Barros,

GPP(gCm?d™")
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APAR x VPD_x T_(MJ d”)

2006; Leuning et al., 2005). For grasslands, €,ax from the BPLUT is rep-
resentative for grasslands globally (Heinsch et al., 2003) including dif-
ferent moisture regimes as well as varying proportions of C3/C4 grass
(Merbold et al., 2009), factors that can influenced inferred &nax
(Fig. 8b). Garbulsky et al. (2010) reported average annual € ranging
from 0.34 to 2.01 g C MJ™! for a range of vegetation types. Garbulsky
et al. (2010) further stress that annual precipitation is more important
than vegetation type in determining both average € and €,,x in global
comparisons. In addition, several existing LUE models have used €max
above the ones found in the BPLUT of MOD17A2 for savannas and grass-
lands (e.g. Kanniah et al., 2009; Nouvellon et al., 2001; Seaquist, Olsson,
& Ardo, 2003; Yuan et al., 2007).
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Fig. 8. 8-day eddy covariance estimated GPP (g Cm~2 day~!) against the product of MOD17A2 FAPAR, tower PAR, VPD; and T; for savannas (a) and grasslands (b). Solid lines rep-
resent linear regression-estimated inferred €n,,.x whereas dashed lines represent the €y,.x used by MOD17A2.
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Table 3
Linear regression statistics (slope and coefficient of determination) for both inferred
€max. and MOD17A2 €.« (no offset).

Site Inferred €max R (inferred €max) MOD17A2  R? (MOD17A2 £1ax)
(bﬂ' g CMjil) E€max

SD-DEM 235 0.74 0.84 0.12
BF-BON 248 0.92 1.21 0.49
BW-MA 1.58 0.40 1.21 0.26
CG-HIN 1.77 0.55 1.21 -
CG-TCH 1.85 0.86 1.21 0.15
ML-AGG  2.16 0.65 0.86 0.28
ML-KEM  3.50 0.35 0.86 -
ZA-KRU 1.21 0.45 1.21 0.45
ZM-MON 1.87 0.79 1.21 0.22
ZA-MAP 0.33 0.32 1.21 -
NG-WAM 1.58 0.44 0.86 0.08
NG-WAF  2.92 0.56 0.86 -

5. Conclusion

In this study we evaluated the MOD17A2 GPP product through com-
parison with in situ measurements of meteorology and GPP for 12
African eddy covariance flux towers. MOD17A2 underestimated GPP
with a mean difference of 0.70 gC m~2 day ™! but with considerable
variability among the 31 site-years of data available. Seasonality was
captured well but GPP was underestimated by MOD17A2 specifically
for many of the dry sites. Differences in the driver data were found
when comparing daily NCEP/DOE II and in situ observations. Replacing
the NCEP/DOE II driver data (T, VPD, and incoming PAR) with tower
measured data moderately improved the correlation with eddy covari-
ance GPP. Inferred €.,.x was significantly higher than the prescribed
MOD17A2 gax- This in addition to uncertainties in FAPAR may explain
the underestimations at dry sites. The results suggest that improved
quality of driver data and FAPAR and a readjustment of the parameters
in the BPLUT (primarily €,2x), may be needed to better estimate GPP for
African ecosystems in MOD17A2. Additional in situ measurements of
GPP and FAPAR are needed for a wider range of ecosystem types in
Africa to allow for more systematic evaluations of MODIS GPP and its
MODIS and non-MODIS inputs in African environments.
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